近日,中科院宁波材料所姚霞银研究员团队提出了一种同时可以满足水分和界面稳定性的有效方法,通过气固反应在Li10GeP2S12颗粒的表面引入一层氟化锂涂层,形成了具有核壳结构的固态电解质LiF@Li10GeP2S12。密度函数理论计算验证了具有核壳结构的LiF@Li10GeP2S12有较低的吸附能量,大大抑制了 在Li10GeP2S12中的PS43-的分解。同时,LiF@Li10GeP2S12具有较低的电子传导率,为2.42 × 10-9 S cm-1,可以有效地抑制锂枝晶的增长,并防止锂和LiF@Li10GeP2S12之间的副反应,将临界电流密度从1.0 mA cm-2提高到了3.0 mA cm-2。基于LiF@Li10GeP2S12的全固态锂电池表现出了优异的倍率性能和循环稳定性,组装后的LiNbO3@LiCoO2/LiF@Li10GeP2S12/Li电池在1 C下的初始放电容量为101.0 mAh g-1,循环1000次后容量保持率为94.8%。
该团队通过气相氟化技术开发的LiF@Li10GeP2S12核壳电解质表现出了出色的湿度和对锂稳定性。LiF@Li10GeP2S12在空气暴露40分钟后,离子电导率为1.46 × 10-3 S cm-1。此外,该 LiF@Li10GeP2S12的电子电导率较低,为2.42 × 10-9 S cm-1,抑制了锂枝晶的生长,并阻止了锂枝晶的侧向生长。组装后LiNbO3@LiCoO2/LiF@Li10GeP2S12/Li全固态锂电池表现出卓越的循环速率性能,在1C下稳定循环1000次循环,在0.1C、0.2C、0.5C、1C、2C和3C时,分别达到132.8、128.9、120.7、103.1、80.7和65.1 mAh g-1。该研究为硫化物电解质的水解机制和稳定硫化物电解质在全固态锂电池中对水分和锂的影响提供了新的视角。
上一篇:咖啡因作为下一代锂电池的储能材料